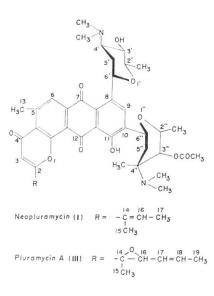
STRUCTURES OF PLURAMYCIN A AND NEOPLURAMYCIN

Sir:

Pluramycin $A^{1,2}$ and neopluramycin³) are potential antitumor antibiotics produced by *Streptomyces pluricolorescens* OKAMI *et* UMEZAWA and by another strain (No. MB760-MGI) of *Streptomyces pluricolorescens*, respectively. In this communication, the structural elucidation and ¹³C chemical shift assignments for the two antibiotics are reported.


The formula $C_{41}H_{50}N_2O_{10}$ was assigned to neopluramycin (I) by the elemental analysis³⁾ and ¹³C NMR spectrum. Acetylation of I with acetic anhydride in pyridine at room temperature for

24 hours afforded diacetylneopluramycin (II), mp $211 \sim 212^{\circ}$ C (dec.), m/e 814 (M⁺ for C₄₅H₅₄N₂- O_{12}). It was identified with triacetylkidamycin⁴) which was kindly supplied by Dr. I. UMEZAWA, Kitasato Institute, in all respects including the conformations of two tetrahydropyran rings. From these results, I is suggested to be a monoacetyl derivative of kidamycin. The structures of kidamycin and triacetylkidamycin were elucidated on the basis of the X-ray crystallographic analysis of triacetylmethoxykidamycin bis(methylammonium iodide) by FURUKAWA et $al.^{4}$ In ¹H NMR spectrum of I (Table 1), an acetyl signal is observed at δ 2.19 and the chemical shift which can be assigned to the 3"-H (δ 5.14) moves to a lower field than that of kidamycin

Table 1. Chemical shifts of ¹H NMR spectra

Proton	ppm (J Hz)				
	I	п	III	IV	
2'-H	3.53 m (6, 8.5)	3.65 m (6,9)	3.56 m (6, 9)	3.65 m (6, 9)	
2'-CH3	1.46 d (6)	1.31 d (6)	1.46 d (6)	1.32 d (6)	
3'-H	3.26 dd (9, 8.5)	4.88 t (9)	3.26 t (9)	4.88 dd (9, 10)	
3'-OH			3.15		
3'-OAc		2.14 s		2.14 s	
4'-H	2.86 m (9)	3.09 m (9)	2.87 m (9, 9)	3.11 m (10)	
$5'-H_{ax}$	1.33 m (10)	~1.3	1.39 m (10, 9)	~1.3	
$5'-H_{eq}$		~1.6	~1.6	~1.6	
6'-H	5.39 dd (10)	5.40 dd (10)	5.43 d (10)	5.42 dd (10)	
2''-Н	4.31 m (7, 4.5)	4.32 m (7, 4.5)	4.32 m (7, 4.5)	4.32 m (7, 4.5)	
2"-CH3	1.51 d (7)	1.43 d (7)	1.53 d (7)	1.42 d (7)	
3''-Н	5.14 d (4.5)	5.20 d (4.5)	5.14 d (4.5)	5.21 d (4.5)	
3''-OAc	2.19 s	2.18 s	2.20 s	2.20 s	
4"-CH3	0.93 s	0.98 s	0.93 s	1.00 s	
5"-H _{ax}	1.80 dd (8.5, 14)	~1.6 dd (9.5, 14)	1.79 dd (8.5, 14)	~1.7	
$5''-H_{eq}$	2.43 dd (4, 14)	~2.4	2.46 dd (4, 14)	~2.5	
6''-H	5.54 dd (8.5, 4)	5.30 m (9.5)	5.54 dd (8.5, 4)	5.30 m (9, 4)	
$N(CH_3)_2$	2.34 s	2.27 s	2.33 s	2.28 s	
$N(CH_3)_2$	2.34 s	2.32 s	2.35 s	2.32 s	
3-H	6.34 s	6.33 s	6.50 s	6.44 s	
$13CH_3$	2.96 s	2.97 s	3.00 s	2.97 s	
6-H	7.91 s	7.81 s	7.99 s	7.85 s	
9-H	8.26 s	8.32 s	8.27 s	8.31 s	
11-OH		-	13.92 bs	-	
11-OAc		2.51 s		2.46 s	
15CH ₃	1.97 s	1.99 s	1.83 s	1.77 s	
16-H	7.43 m	7.31 m (6.5)	4.15 d (8)	3.97 d (8)	
17CH ₃	2.01 d (7)	1.98 d (6.5)	-		
17 - H	-		5.40 m (11, 8, 2)	5.36 m (11, 8, 2)	
18 - H	-	-	6.05 m (11, 7)	6.02 m (11, 7)	
19CH ₃		-	1.88 dd (7, 2)	1.87 dd (7, 2)	

Spectra were measured in CDCl₃ using TMS as the internal reference.

(lit.⁴⁾ δ 3.37). It indicates that the structure of neopluramycin is 3"-O-acetylkidamycin as shown by structure **I**.

The formula $(C_{43}H_{52}N_2O_{11})$ of pluramycin A (III) was derived from the mass spectrum (M⁺, m/e 772). Acetylation of III with acetic anhydride in pyridine at room temperature afforded diacetylpluramycin A (IV), mp 144~146°C (dec.), m/e 856 (M⁺ for C₄₇H₅₆N₂O₁₃). In ¹H NMR spectra of III and IV (Table 1), the relation of protons in a series of CH3-CH=CH-CH-[(C-19)-(C-18)-(C-17)-(C-16)-] was carefully analyzed. On NOE experiments of III, saturation of the 15CH₃ singlet resulted in enhancements of 26% and 16% of the integrated areas of 3-H and 16-H, respectively, suggesting that the side chain at C-2 has an oxirane ring on C-14 and C-16⁵). Saturation of the 13CH₃ singlet indicated a 26% NOE for 6-H, and an NOE on 6'-H or 6"-H upon irradiation of the 9-H singlet was also observed.

In ¹⁸C NMR spectrum of III, all carbons except for N-methyl carbons were completely assigned by off-resonance decoupling, selective proton decoupling and gated decoupling techniques, as shown in Table 2. The identification of C-12a (δ 119.1) was made by a long-range coupling with 6-H, and then a signal at δ 116.0 was assigned to C-11a. Since the C-16 signal at δ 61.7 had a large ¹⁸C-¹H coupling constant, J=174 Hz, the existence of the oxirane ring on C-14 and C-16 could be confirmed⁶).

Therefore, the structure **III** can be assigned to pluramycin A. The stereochemistry of the

Table 2.	The ¹³ C	chemical	shifts	of neopluramycin
(I), plu	ramycin A	A (III) an	d their	diacetates (II and
IV).				

The ¹³C FT NMR spectra were taken with a Varian XL-100 spectrometer. Sample were dissolved in CDCl₃ containing TMS as the internal reference. Assignments, s, d, t and q, show multiplicity on off-resonance experiment. Similar values in parentheses within each column may be interchanged; their tentative assignments are given on the basis of the values of **III**.

olefin on the side chain is shown to be *trans* by the coupling constant of the olefinic protons and the long-range coupling between 17-H and 19CH₃. The NOE experiment can suggest the *cis* configuration for the epoxide, but its absolute structure is remained without determination.

Acknowledgement

This work was partly supported by a grant-in-aid for cancer research from the Ministry of Education, Science and Culture.

> Shinichi Kondo Masashi Miyamoto Hiroshi Naganawa Tomio Takeuchi Hamao Umezawa

Institute of Microbial Chemistry Kamiosaki, Shinagawa-ku, Tokyo, Japan

(Received September 2, 1977)

References

 MAEDA, K.; T. TAKEUCHI, K. NITTA, K. YAGI-SHITA, R. UTAHARA, T. OSATO, M. UEDA, S. KONDO, Y. OKAMI & H. UMEZAWA: A new antitumor substance, pluramycin. J. Antibiotics, Ser. A 9: 75~81, 1956

- TAKEUCHI, T.; K. NITTA & H. UMEZAWA: Antitumor effect of pluramycin crude powder on EHRLICH carcinoma of mice. J. Antibiotics, Ser. A 9: 22~30, 1956
- KONDO, S.; T. WAKASHIRO, M. HAMADA, T. TAKEUCHI & H. UMEZAWA: Isolation and characterization of a new antibiotic, neopluramycin. J. Antibiotics 23: 354~359, 1970
- FURUKAWA, M.; I. HAYAKAWA, G. OHTA & Y. IITAKA: Structure and chemistry of kidamycin. Tetrahedron 31: 2989~2995, 1975
- 5) NAKANISHI, K.; R. CROUCH, I. MIURA, X. DOMIN-GUEZ, A. ZAMUDIO & R. VILLARREAL: Structure of a sesquiterpene, cuauhtemone, and its derivative. Application of partially relaxed FOURIER transform ¹³C nuclear magnetic resonance. J. Am. Chem. Soc. 96: 609~611, 1974
- STOTHERS, J. B.: Carbon-13 NMR spectroscopy. p. 342, Academic Press, New York, 1972